Dynamics of a Polymer Network Based on Dual Sierpinski Gasket and Dendrimer: A Theoretical Approach

نویسندگان

  • Aurel Jurjiu
  • Flaviu Turcu
چکیده

In this paper we focus on the relaxation dynamics of a multihierarchical polymer network built through the replication of the dual Sierpinski gasket in the form of a regular dendrimer. The relaxation dynamics of this multihierarchical structure is investigated in the framework of the generalized Gaussian structure model using both Rouse and Zimm approaches. In the Rouse-type approach, we show a method whereby the whole eigenvalue spectrum of the connectivity matrix of the multihierarchical structure can be determined iteratively, thereby rendering possible the analysis of the Rouse-dynamics at very large generations. Remarkably, the general picture that emerges from both approaches, even though we have a mixed growth algorithm and the monomers interactions are taken into account specifically to the adopted approach, is that the multihierarchical structure preserves the individual relaxation behaviors of its constituent components. The theoretical findings with respect to the splitting of the intermediate domain of the relaxation quantities are well supported by experimental results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A unified model for Sierpinski networks with scale-free scaling and small-world effect

In this paper, we propose an evolving Sierpinski gasket, based on which we establish a model of evolutionary Sierpinski networks (ESNs) that unifies deterministic Sierpinski network [Eur. Phys. J. B 60, 259 (2007)] and random Sierpinski network [Eur. Phys. J. B 65, 141 (2008)] to the same framework. We suggest an iterative algorithm generating the ESNs. On the basis of the algorithm, some relev...

متن کامل

Spanning Forests on the Sierpinski Gasket

We present the numbers of spanning forests on the Sierpinski gasket SGd(n) at stage n with dimension d equal to two, three and four, and determine the asymptotic behaviors. The corresponding results on the generalized Sierpinski gasket SGd,b(n) with d = 2 and b = 3, 4 are obtained. We also derive the upper bounds of the asymptotic growth constants for both SGd and SG2,b.

متن کامل

Random Sierpinski network with scale-free small-world and modular structure

In this paper, we define a stochastic Sierpinski gasket, on the basis of which we construct a network called random Sierpinski network (RSN). We investigate analytically or numerically the statistical characteristics of RSN. The obtained results reveal that the properties of RSN is particularly rich, it is simultaneously scale-free, small-world, uncorrelated, modular, and maximal planar. All ob...

متن کامل

The Finite Element Method on the Sierpinski Gasket

For certain classes of fractal differential equations on the Sierpinski gasket, built using the Kigami Laplacian, we describe how to approximate solutions using the finite element method based on piecewise harmonic or piecewise biharmonic splines. We give theoretical error estimates, and compare these with experimental data obtained using a computer implementation of the method (available at th...

متن کامل

Hölder extension of a function defined on a Sierpinski gasket

We construct a linear extension operator Π that extends a function u defined on a Sierpinski gasket S which satisfies the Hölder estimate |u(x)− u(y)| ≤ C0|x− y| for all x, y on S, to a larger domain Ω ⊆ R. The extension function Πu is defined everywhere in Ω, is Hölder continuous everywhere in Ω, corresponds with u at every point on S and satisfies the estimate |Πu|Ω,β ≤ C‖u‖S,β with a constan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017